Susely FIGUEROA

Susely FIGUEROA

Mathematician

I am interested in mathematical biology and medicine. Mathematically, I work mainly with Lotka-Volterra reaction-diffusion models, doing stability analysis, non-local analysis and long time solution behavior. Models with the presence of bifurcations and themes linked to central manifold are also within my interests. From the biological approach I work in models from evolutionary biology, modelling the dynamics of phenotypically structured population in oder to capture the influence of the environment on natural selection and on the expression of phenotypes, or the consequences of evolution for population growth and extinction risk in changing environments.

susyfigueroaiglesias@gmail.com Toulouse, France

Research Topics

  • Topic Icone

    Parabolic Integro-differential models

    Parabolic integro-differential models combine PDEs and integral equations to describe complex systems with diffusion and memory effects. They find applications in physics, biology, and engineering.

  • Topic Icone

    Selection-mutation models

    Selection-mutation models explore genetic evolution by combining natural selection and mutation. They're crucial in evolutionary biology.

  • Topic Icone

    Hamilton-Jacobi equations

    Hamilton-Jacobi equations are fundamental in physics and optimization, describing dynamic systems and paths of least resistance.

  • Topic Icone

    Dynamics of structured population

    Structured population dynamics examines how populations with diverse characteristics change over time, crucial in ecology and epidemiology.

  • Topic Icone

    Stability and Hopf-Bifurcation in reaction-difussion models

    Stability and Hopf-Bifurcation analysis in reaction-diffusion models investigates equilibrium and oscillatory behavior, vital in studying pattern formation.

  • Topic Icone

    Application in evolutionary biology and medicine

    Application in evolutionary biology and medicine employs mathematical models to study genetic evolution and disease dynamics, aiding research and healthcare decisions.

Education

  1. 2016-2019

    Phd in Applied Mathematics. Institut de Mathématiques de Toulouse (IMT)

    Paul Sabatier University, France.

    Subject: Integro-differential models for evolutionary dynamics of populations in time-heterogeneous environments

    Supervisr: Sepideh MIRRAHIMI

    Jury: Jean-Michel Roquejoffre, Stéphane Mischler, Mathieu Alfaro, Grégoire Nadin, Delphine Salort

  2. 2015-2016

    Master 2 MIDO « Mathématiques Appliquées : Parcours Analyse et Probabilités » (Applied Mathematics: Analysis and Probabilities)

    Paris Dauphine University, France

    Research Memory Subject: Convex plates roolling without slipping

    Supervisors: Jean-Pierre Marco and Jaques Fejoz

  3. 2012-2014

    Master in Mathematics: Ecuaciones Diferenciales y Mecánica (Differential Equations and Mecanics)

    Havana University, Cuba.

    Research Memory Subject: Sub-critical Hopf bifurcation for the Gray-Scott reversible non-linear model

    Supervisor: Mariano Rodriguez Ricard

  4. 2008-2012

    Bachelor in Mathematics

    Honor title: 4,76/5. Havana University, Cuba.

    Graduated thesis: Atherosclerosis: a reaction-diffusion wave.

    Supervisor: Mariano Rodriguez Ricard

  5. 2005-2008

    Science High-School Degree

    Instituto Vocacional de Ciencias Exactas Vladimir Ilich Lenin, Havana, Cuba

Teaching

  • 2020-2021

    Teaching Associate Lecturer (Vacataire), INSA Toulouse, France.

    TTD: Analyse et Algèbre L1

  • 2019-2020

    Teaching Asistant (ATER), INSA Toulouse, France.

    TTD: Analyse et Algèbre L1

  • 2017-2019

    Phd Student in charge of teaching, INSA Toulouse, France.

    TD: Analyse et Algèbre L1

  • 2016-2017

    Phd Student in charge of teaching, Paul Sabatier University, France.

    TD: Analyse Mathématique L1 Sciences

    TP: Outils Mathématiques (Python)

  • 2016-2017

    Phd Student in charge of teaching, Paul Sabatier University, France.

    TD: Analyse Mathématique L1 Sciences

    TP: Outils Mathématiques (Python)

  • 2012-2014

    Graduated Assistant, Havana University, Cuba.

    Analysis for Physics, Pharmacy and Computer Science

    Ordinary Differential Equations

Publications & Presentations

  • Epidemic Dynamics via Wavelet Theory and Machine Learning with Applications to Covid-19

    Tô Tat D., Protin F., Nguyen T. T. H., Martel J., Nguyen Duc T., Charles P., Rodríguez W., FI, S., Hông V.L., Wilderich T. and Nguyen T. Z

    Biology 2020, 9(12), 477

    Read more about this article
  • Selection and mutation in a shifting and fluctuating environment

    FI, S., Mirrahimi, S.

    Communications in Mathematical Sciences, (accepted march 2021)

    Read more about this article
  • Horizontal gene transfer: numerical comparison between stochastic and deterministic approaches

    Calvez, V., FI, S., Hivert, H., Méléard, S., Melnykova, A. and Nordmann, S.

    ESAIM: Proceedings and Surveys, (accepted june 2019)

    Read more about this article
  • Long time evolutionary dynamics of phenotypically structured populations in time periodic environments

    FI, S., Mirrahimi, S.

    SIAM Journal of Mathematical analysis 50(5):5537–5568, 2018.

    Read more about this article
  • Bifurcación de Hopf Subcrítica para el Modelo Reversible no Lineal de Gray-Scott con Difusión (Sub-critical Hopf bifurcation for the Gray-Scott reversible non-linear model)

    FI, S., Rodriguez Ricard, M.

    Ciencias Matemáticas, vol. 29, no 1, pp. 53-59, 2015, Cuba.

    Read more about this article
  • Ateroesclerosis: una onda de reacción-difusión (Atherosclerosis: a reaction-diffusion wave)

    FI, S.

    Memories of COMPUMAT 2013, Havana, Cuba.

    Read more about this article
  • Les fluctuations de l'environnement peuvent-elles aider la population à suivre un changement climatique ?

    january 2020

    Groupe de Travail Bio-Math, Institut Denis Poisson, Orléans

  • Horizontal Gene Transfer: stochastic VS deterministic models

    january 2020

    PDE-MANS 2020, Granada, Spain.